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Motivations
Compressed sensing (CS)

Why focus on CS?

• Technique for non-adaptive acquisition, representation, reconstruction of
large sparse/compressible data using few measurements [Candes,
Romberg & Tao, 2004]

”... the paradigm-busting field
in mathematics that’s
reshaping the way people work
with large data sets”, 2010

”hottest topic in applied math
today”, [Candes rewarded with
Waterman Prize 2006]

• millions of dollars/euros in grants
(CRISP, Reco Samp, SPARCS, PLEASE, C-SENSE, SpaRTaN, ...)

• CS fever (thousands papers) in pure and applied mathematics,
information theory, signal processing, circuit design, optical engineering,
biomedical imaging, ...)



Motivations
CS in control systems

CS in control community

• Fewer papers so far (system identification, optimal control, ...)

• Growing interest from 2010

• See “A Tutorial on Compressed Sensing and Control Theory: Some
Answers and Some Questions” [Vidyasagar, CDC’2016]

Purpose of these slides

• Review of basic principles of CS (new tool)

• Framework with applications in multi-agent systems

1 Distributed Compressed Sensing in intelligent networked systems

2 Identification and inference in social systems (new application)

3 Sparse optimal control (new field)

• Discuss open questions

• Opportunities for inter-disciplinary work



Sparsity is ubiquitous...

EPFL – Signal Processing Laboratory (LTS4) 
http://lts4.epfl.ch
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Matrix completion on graphs
! Assumption: users and movies 

each form a smooth low-
dimensional manifold 
- Manifold samples form a graph 
- Graph Laplacian used to ‘force’ 

consistency in sample distributions

42

[Kalofolias:2014]
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•  Introducing'manifold/graph'informa.on'into'matric'comple.on:''

(1)$Row/user$graph:$
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(2)$Column/movie$graph:$
Gc = (V c, Ec, W c)
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Lc is graph Laplacian of column graph

Lr is graph Laplacian of row graph

with(

=>$A$natural$way$to$force$rows$and$columns$to$be$
close$as$they$would$be$on$manifold/graph$is$to$
minimize$the$Dirichlet$energies$[BelkinBNyogi’03]:)

[BelkinYNiyogi’03](M.(Belkin,(P.(Niyogi:(Laplacian(Eigenmaps(for(Dimensionality(ReducFon(and(Data(RepresentaFon.(Neural(ComputaFon(15(6):(1373Y1396((2003)(
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Compressed sensing in a nutshell

Foundational result: k-sparse signal x ∈ Rn with k � n

1 Take m� n measurements

y = Ax

• fat random matrix A ∈ Rm×n

• measurements y ∈ Rm

2 Reconstruction possible w.h.p. using m = O(k log(n/k))

x̂BP = argmin‖x‖1 s.t. y = Ax

3 Many low-complexity iterative algorithms (hundreds of papers)

Nonadaptive compression useful when

• measurements are expensive, but some computational
capabilities available

• data must be processed and communicated efficiently
(dimensionality reduction)



CS in multi-agent systems I
Distributed Compressed Sensing

Apply CS in multi-agent systems where each individual can

• sense its immediate environment

• store limited amount of information

• perform a low number of operations

• communicate under some constraints

3
1

2

y3 = A3x
y1 = A1x

y2 = A2x4y4 = A4x

Applications: robotic systems, sensor networks for surveillance,
indoor localization and monitoring



CS in multi-agent systems I
Distributed Compressed Sensing

Classical framework: distributed compressed sensing

• distributed compressed acquisition in a sensor network;

• centralized reconstruction from few linear measurements

• drawbacks: energy utilization, delays, robustness, privacy

New trend: distributed reconstruction (no fusion center) [Mota&al.

2012, Patterson&al. 2014, Ravazzi&al. 2015, Ravazzi&al. 2016]

(?) distribute the reconstruction task over the network

(?) design distributed, low-complex, low-memory and randomized
algorithms with theoretical guarantees

(?) cope with agents’ limited computational power and memory

(?) minimize the total number of transmissions

(?) deal with nonlinear measurements: quantization, noise, ...



CS in multi-agent systems II
System identification in opinion dynamics

Assumptions:

• Population of individuals

• Discussion on several topics

• Individuals have opinions

• People interact

• Opinions evolve

Mathematical model:

G = (V, E,W ) ↔ Social network

• v ∈ V ↔ agents

• E ⊆ V × V ↔ interactions

• W ∈ RV×V ↔ influences

• Wuv = 0 if (u, v) /∈ E
• x`v (k) ∈ R ↔ opinions on issue `

• x`(k + 1) = fW (x`(k))

x`u (k)

x`v (k)

Wuv



CS in multi-agent systems II
System identification in opinion dynamics

Assumptions:

• W sparse ↔ people influenced by few
friends

• W low rank ↔ few communities
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(?) Estimate W from partial observations of opinions

[A. Scaglione & al. 2016], [C. Ravazzi, R. Tempo, F. Dabbene, 2016]

(?) Detect communities from compressed/sparse measurements

[C. Ravazzi & al. 2015]

(?) Detect stubborn, influential agents

(?) Estimate spectral properties from compressed/sparse measurements

[J. Hendrickx & al. 2017]

Applications: Trust-based recommending systems (Amazon, Apple,

Booking.com, ...)



CS in multi-agent systems III
Sparse optimal control

Assumptions:

• Population of individuals

• Individuals have opinions

• People interact and opinions evolve

Main challenges: sparse optimal controls (acting on few
nodes/edges only) to lead

(?) the dynamics towards a desired pattern

[M. Bongini, M. Caponigro, M. Fornasier, B. Piccoli, and E. Trelat, 2012-2017]

(?) qualitative changes to the limit profile (e.g., merge clusters
together)

(?) quantitative changes to some observable (e.g., average opinion,
target nodes) [Yildiz & al. 2013]



Summary

Take-home messages:

• Sparse models useful for estimation/inference/learning
problems in multi-agent systems

• New notion of sparsity for data living on irregular structures
using graph based representation

• Framework with numerous applications in multi-agents
systems

• Still many open problems

• Opportunities for inter-disciplinary work (graph theory, linear
algebra, probability, signal processing, control theory, detection
and estimation theory, optimization, machine learning, ... )
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