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Motivations
Compressed sensing (CS)

Why focus on CS?

® Technique for non-adaptive acquisition, representation, reconstruction of
large sparse/compressible data using few measurements [Candes,
Romberg & Tao, 2004]

... the paradigm-busting field

in mathematics that'’s m I E E m

reshaping the way people work ~ N 5 e Blanks:

with large data sets”, 2010 ‘1 Algorithm Makes
Something Oul ol
Nothing

"hottest topic in applied math
today”, [Candes rewarded with
Waterman Prize 2006]

e millions of dollars/euros in grants
(CRISP, Reco Samp, SPARCS, PLEASE, C-SENSE, SpaRTaN, ...)

e CS fever (thousands papers) in pure and applied mathematics,
information theory, signal processing, circuit design, optical engineering,
biomedical imaging, ...)
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Motivations

CS in control systems

CS in control community
® Fewer papers so far (system identification, optimal control, ...)
® Growing interest from 2010

® See “A Tutorial on Compressed Sensing and Control Theory: Some
Answers and Some Questions” [Vidyasagar, CDC'2016]

Purpose of these slides
® Review of basic principles of CS (new tool)
® Framework with applications in multi-agent systems

@ Distributed Compressed Sensing in intelligent networked systems
@ |dentification and inference in social systems (new application)
© Sparse optimal control (new field)

® Discuss open questions

® Opportunities for inter-disciplinary work
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Sparsity is ubiquitous...
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Compressed sensing in a nutshell

Foundational result: k-sparse signal x € R"” with kK < n
® Take m < n measurements
y = Ax

e fat random matrix A € R™*"
e measurements y € R™

@® Reconstruction possible w.h.p. using m = O(k log(n/k))
Xgp = argmin||x||1 s.t. y = Ax
©® Many low-complexity iterative algorithms (hundreds of papers)
Nonadaptive compression useful when

e measurements are expensive, but some computational
capabilities available

e data must be processed and communicated efficiently

(dimensionality reduction)
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CS in multi-agent systems |
Distributed Compressed Sensing

Apply CS in multi-agent systems where each individual can

® sense its immediate environment

.o . . 1 = Aix
® store limited amount of information y3=Ax —— 3

1
® perform a low number of operations /X/

® communicate under some constraints

Applications: robotic systems, sensor networks for surveillance,
indoor localization and monitoring

®

7]

STMicroelectronics
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CS in multi-agent systems |
Distributed Compressed Sensing

Classical framework: distributed compressed sensing
e distributed compressed acquisition in a sensor network;
e centralized reconstruction from few linear measurements
e drawbacks: energy utilization, delays, robustness, privacy

New trend: distributed reconstruction (no fusion center) [Mota&al.
2012, Patterson&al. 2014, Ravazzi&al. 2015, Ravazzi&al. 2016]

(7) distribute the reconstruction task over the network

(?7) design distributed, low-complex, low-memory and randomized
algorithms with theoretical guarantees

(?) cope with agents’ limited computational power and memory
(?) minimize the total number of transmissions

(?) deal with nonlinear measurements: quantization, noise, ...
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CS in multi-agent systems Il

System identification in opinion dynamics

Assumptions: Mathematical model:

e Population of individuals G =(V,€, W) ¢ Social network
® v cV & agents

e Discussion on several topics e £CVxV ¢ interactions

o Individuals have opinions ® W eRY*Y & influences
. ® W, =0if(u,v)¢¢E
e People interact Zuv ( )¢ .
® x;(k) € R <+ opinions on issue £
e QOpinions evolve o xi(k+1)= fW( £(k))

‘(k)

' gttt Y
Py gty t /
gty 1"’\}, =3
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CS in multi-agent systems Il

System identification in opinion dynamics

Assumptions:
® W sparse <+ people influenced by few
friend
riends %
e W low rank < few communities
Main cha"enges Facebook network

(?) Estimate W from partial observations of opinions

[A. Scaglione & al. 2016], [C. Ravazzi, R. Tempo, F. Dabbene, 2016]
(?) Detect communities from compressed/sparse measurements

[C. Ravazzi & al. 2015]
(?) Detect stubborn, influential agents

(?) Estimate spectral properties from compressed/sparse measurements
[J. Hendrickx & al. 2017]

Applications: Trust-based recommending systems (Amazon, Apple,
Booking.com, ...)
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CS in multi-agent systems Il

Sparse optimal control

Assumptions:
e Population of individuals
- - > ﬂ‘x " L
e Individuals have opinions :l”j’ l; v "" &'\l, ’”

o= é
e People interact and opinions evolve - 1}'/ -

Main challenges: sparse optimal controls (acting on few
nodes/edges only) to lead

(?) the dynamics towards a desired pattern
[M. Bongini, M. Caponigro, M. Fornasier, B. Piccoli, and E. Trelat, 2012-2017]

(?) qualitative changes to the limit profile (e.g., merge clusters
together)

(?) quantitative changes to some observable (e.g., average opinion,
target nodes) [Yildiz & al. 2013]
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Summary

Take-home messages:

Sparse models useful for estimation/inference/learning
problems in multi-agent systems

New notion of sparsity for data living on irregular structures
using graph based representation

Framework with numerous applications in multi-agents
systems

Still many open problems

Opportunities for inter-disciplinary work (graph theory, linear
algebra, probability, signal processing, control theory, detection
and estimation theory, optimization, machine learning, ... )
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